On the move: Incarceration, race, and residential mobility

Cody Warner

Department of Sociology and Anthropology, Montana State University, P.O. Box 172380, Bozeman, MT 59717-2380, United States

ARTICLE INFO

Article history:
Received 7 July 2014
Revised 9 March 2015
Accepted 20 March 2015
Available online 28 March 2015

Keywords:
Incarceration
Residential mobility
Race

ABSTRACT

The present study examines the relationship between incarceration and post-prison residential mobility. In spite of recent research examining the residential context following incarceration, we know little about if or how incarceration affects individual patterns of residential mobility. This study starts to fill this gap in knowledge by drawing on nationally representative data from the 1979 National Longitudinal Survey of Youth (NLSY79). I find that individuals with a history of incarceration are more likely to move after prison than they are before prison. This relationship holds even after accounting for various time-varying and time-stable sources of spuriousness, including other known correlates of mobility. Additional analyses suggest that this effect is strongest early in the reentry period, and that there exists important racial variation in the relationship between incarceration and mobility. These results imply that, while housing stability is an important feature of successful prisoner reentry, incarceration contributes to larger patterns of residential instability.

1. Introduction

Each year, 40 million Americans experience a change of address. Most moves are not random events, but rather the result of individual and household characteristics that change the definition of housing needs (Landale and Guest, 1985; Rossi, 1980; Speare et al., 1975). But not all moves are voluntary, and many perfectly satisfied households are forced or compelled to move each year. Disadvantaged and marginalized portions of the population are especially vulnerable to push factors (such as rent increases or evictions) that create unintended mobility (Lee, 1978). In this paper I examine how residential mobility is affected by an individual’s membership in one of America’s fastest growing marginalized subgroups: individuals with a history of incarceration, often referred to as the felon class (Uggen et al., 2006).

In 2011, 1 of every 34 adults was under some form of correctional supervision (prisons, jails, and community corrections), and about 1 of every 200 adults was confined in a state or federal prison (Carson and Sabol, 2012; Glaze and Parks, 2012). Four decades of correctional growth have resulted in a prison population of nearly 1.5 million convicted citizens. After spending, on average, over 2 years incarcerated, around 700,000 individuals are released from prison each year (Carson and Golinelli, 2013). Social scientists interested in the later-life consequences of incarceration have linked the confinement experience to negative outcomes including increased unemployment, depressed wages, divorce, and decreased mental and physical health functioning (Lopoo and Western, 2005; Massoglia, 2008; Pager, 2003; Schnittker and John, 2007; Western, 2002). These collateral consequences spread through entire families as children and partners of incarcerated individuals.

1 To the extent possible, in this study I avoid stigmatizing terminology like “felon class” and “ex-inmate.” Rather, I use more neutral terminology such as “individuals with incarceration histories” or “returning citizens.” I thank an anonymous reviewer for urging me to adopt such language.

http://dx.doi.org/10.1016/j.ssresearch.2015.03.009
0049-089X/© 2015 Elsevier Inc. All rights reserved.
In this paper, I draw on longitudinal survey data to examine how incarceration impacts individual patterns of residential mobility across time. I start by briefly reviewing existing research that has examined mobility following incarceration. I then conceptualize the direct and indirect ways that incarceration, as a distinct life event, might impact residential mobility in both the short- and long-term. After an overview of the data and measures, I present results that suggest incarceration is associated with later residential instability. Key here is my use of fixed effects logistic regression models, which examine variation across time in an individual’s likelihood to move or not move. I conclude by noting limitations of my approach as well as implications of my findings.

1.1. Incarceration and residential mobility

Although nearly all imprisoned offenders are eventually released, little is known about their pre- or post-prison residential mobility patterns. What we do know about mobility among returning citizens comes primarily from the Urban Institute’s Returning Home Project, where select cohorts of released prisoners were tracked after prison. The findings from this project indicate that many parolees live in a different neighborhood after prison than they did before prison. For example, nearly half of the parolees followed in Chicago moved to a new neighborhood after release (La Vigne et al., 2004). A similar pattern of post-prison mobility was documented in Cleveland (54% moved) and Houston (34% moved) (La Vigne et al., 2009; Visher and Courtney, 2007). This mobility may extend beyond the release point, as over half of all the parolees followed in Ohio moved two or more times during their first year out of prison (Visher and Courtney, 2007). Conversely, following the initial period of instability, only 10% of those parolees in Chicago moved more than once (La Vigne and Parthasarathy, 2005). However, these descriptive studies provide limited information regarding incarceration as a distinct predictor of mobility.

But before outlining various direct and indirect pathways that might lead from incarceration to mobility, it is useful to first briefly overview why it is that individuals and households move. Residential mobility is most typically cast as a rational choice process driven by residential stress and dissatisfaction (Rossi, 1980; Speare et al., 1975). The process begins when something triggers an increase in housing dissatisfaction leading to a search for alternatives (Speare et al., 1975). If a more suitable household emerges, then a move is likely. Minus better alternatives the household may attempt to relieve the dissatisfaction in other ways, such as modifying the current household or revising the threshold of housing dissatisfaction (Speare, 1974). Individuals go through the life course on a given trajectory of mobility, typically moving most frequently during young adulthood and then establishing residential stability in adulthood. Rates of mobility are highest in the young adult years, and then decline in the early- and mid-30s, largely because the young adult years are typified by important life changes. Moves are more likely following such transitions because they change the definition of housing needs (Landale and Guest, 1985; Lee and Hall, 2009; Rossi, 1980; South and Deane, 1993; Speare et al., 1975). Some of the strongest predictors of mobility include the transition to homeownership, having children (especially a first child), completing an education, transitioning into full-time employment, and marital transitions (marriage and divorce) (Clark, 1986; Rossi, 1980; South and Deane, 1993; Speare, 1974). Residential stability is said to follow these moves because the dissatisfaction has been alleviated.

It is also important to note that individuals and households move for reasons outside of this choice-based process. Involuntary moves are often brought on by events that are unconnected with housing satisfaction, such as eviction or building destruction (Rossi, 1980). Such moves occur regardless of housing satisfaction. In addition, derivative, or adjustment, moves are driven by events (such as divorce or death of a partner) that, by definition, require moving (Sell, 1983). These cases are important exceptions to choice-based mobility explanations because the decision to move is made independent of the qualities of the existing household. Moves that fall outside of the traditional choice framework are more common among individuals experiencing negative or disruptive events (such as unemployment or divorce) than they are among individuals experiencing normative or positive events (such as marriage or homeownership).

Drawing on previous work, incarceration can be similarly categorized as an important life event that may affect mobility decisions. After 40 years of steady growth, it is becoming common to treat criminal justice contact as a distinct turning point in the life course of crime involved individuals (Pettit and Western, 2004; Western, 2002). So how might we expect

2 Speare et al. (1975) argued that these “deviant cases” do not necessarily negate the choice-based process. Rather, unexpected moves simply move people up in the process (that is, to searching for alternatives).
incarceration to impact post-prison residential mobility patterns? There are three potential pathways that warrant consideration: (1) physical separation and household relocation, (2) stigma-related barriers, and (3) disadvantage and selection.

Sentencing a convicted offender to a period of incarceration creates mobility. This often means taking individuals from urban areas and housing them in rural areas, where prisons tend to be located (Roman and Travis, 2006). The process of coercive mobility thus creates individual mobility, and in areas where incarceration is concentrated, contributes to larger patterns of neighborhood instability (Clear, 2007). At release, returning citizens must answer the question, “Where will I sleep tonight?” Many stay with friends or family, or in some sort of assisted living program like a halfway house (Roman and Travis, 2006). Such arrangements may, by default, require individuals to live in different neighborhoods after prison than they lived in before prison. This would especially be the case if the pre-prison household relocates during the period of incarceration, a possibility that becomes increasingly likely as individuals spend longer periods of time incarcerated. Furthermore, the physical separation created by confinement may make it difficult for soon-to-be-released prisoners to connect with a local housing market. This could make it difficult to make informed choices about potential housing options. As a result, individuals who spend longer periods of time incarcerated may face the most difficulties establishing residential stability following release from prison.

Beyond coercive mobility and physical separation, the incarceration experience may create additional barriers related to residual mobility. Prisoners typically receive little housing assistance leading up to and immediately after release from confinement (Petersilia, 2003). At the same time, incarceration itself carries a strong social stigma that qualifies former prisoners for discrimination and social exclusion (Pager, 2008). Laws limit public and federally assisted housing for some returning citizens, especially for individuals with felony drug convictions (Geller and Curtis, 2011; Travis et al., 2001). Wait lists for public housing are also typically quite long, which may remove this as an option for released prisoners looking for immediate housing (Fontaine and Biess, 2012). The stereotype of formerly incarcerated individuals as dangerous and untrustworthy also make them undesirable tenants in the private housing market (Fontaine and Biess, 2012). Many communities actively restrict housing that might assist released offenders, and some metropolitan areas use exclusionary zones where ex-felons cannot reside (Beckett and Herbert, 2010). Restrictions of this type are especially relevant for sex offenders, who typically cannot, for example, reside near places where children congregate (such as parks and playgrounds) (Zgoba et al., 2009). Taken together, the criminal label and stigma of incarceration may directly create mobility by triggering discrimination and exclusionary practices.

Finally, it is important to keep in mind that, for the most part, the correctional system serves a disadvantaged population. Individuals entering prison average less than a high school education, and unemployment is common leading up to and in confinement (Western, 2006). Financial struggles following incarceration (Lyons and Pettit, 2011; Western, 2002) put ex-inmates at a further disadvantage in the private housing market (Petersilia, 2003). Marginalized and disadvantaged sub-groups are known to have higher-than-expected rates of mobility (Aviram, 1990; Dear and Wolch, 1987; Rossi, 1989). Economically marginal groups are also more vulnerable to push factors such as rent increases, evictions, and building closures (Fischer, 2002; Lee, 1978). As such, formerly incarcerated individuals may move because of high rates of economic marginality. They may also move for reasons that are more difficult to measure, but that remain stable over time, such as personality characteristics like criminality and self-control. This makes it difficult to determine if incarceration creates residential mobility, or if it is the case that residually unstable individuals are more likely to go to prison. The data discussed below allows me to examine individual mobility patterns across nearly 30 years. The analytic approach utilized can leverage such data to eliminate potential time-stable sources of spuriousness by treating each survey respondent as his or her own control across time.

1.2. Incarceration and racial inequality

Before moving on, it is also important to consider evidence on racial variation in the consequences of incarceration. Racial and ethnic minorities experience incarceration at disproportionate rates. The African American male incarceration rate is over six times larger than the white male incarceration rate, and Hispanics are incarcerated at over 2.5 times the white rate (Carson and Sabol, 2012). This does not appear to mean, however, that the consequences of incarceration are uniformly stronger for minorities with a history of incarceration. Granted, disproportionate incarceration is especially damaging to African American civic engagement – at both the individual and aggregate levels – due to felon disenfranchisement (Burch, 2013; Manza and Uggen, 2006). It also works to damage post-prison earnings and certain aspects of health more for African Americans than for whites (Lyons and Pettit, 2011; Massoglia, 2008; Western, 2002). Finally, minority children have been especially affected by both maternal and paternal incarceration. Presently, black children are more likely to have an incarcerated mother than white children are to have an incarcerated father (Western and Wildeman, 2009).

African Americans are also generally disadvantaged in relation to residential outcomes. Black households are typically less able to turn their mobility intentions into actual mobility, or achieve residence in the same quality neighborhoods as comparable white households (Alba and Logan, 1993; Rosenbaum and Friedman, 2007; South and Deane, 1993). However, given that African Americans who go to prison are likely to reside in disadvantaged neighborhoods before incarceration, the incarceration experience itself may have a greater impact on the residential outcomes of formerly incarcerated whites. Because of their advantaged residential position leading up to prison, incarcerated white offenders have the most to lose through incarceration (Massoglia et al., 2013). It remains to be seen if the effect of incarceration on residential mobility operates differently for white, African American, or Hispanic individuals. On the one hand, their particularly strong
disadvantage in post-prison employment and earnings could result in particularly high rates of mobility among formerly incarcerated blacks. Furthermore, black males in high incarceration neighborhoods may lose connections to social institutions that promote stability, as efforts to remain out of jail keep them on the move (Goffman, 2009). On the other hand, white ex-inmates might experience high rates of residential mobility at the same time as they experience downward social mobility.

1.3. The current study

To date, research on mobility following prison has been largely descriptive, and so it remains unknown if incarceration makes a unique contribution to individual and household mobility patterns. The current study starts to fill this gap in knowledge by examining residential mobility patterns for individuals with a history of incarceration. This is done in three ways. First, as outlined above, I examine if any observed association between incarceration and mobility is driven by variation in physical separation through sentence length. Second, treating incarceration as a distinct life event, I examine if the effect of incarceration grows or decays as individuals more temporally away from their period of confinement. That is, I tease out the short- and long-term effects of incarceration. Finally, because of racial variation in both incarceration and the consequences of incarceration, I examine if incarceration is related to mobility differently for white, black, and Hispanic ex-inmates. Throughout the analyses I remain sensitive to potential time-varying and time-stable sources of spuriousness.

This study has a number of potential implications that are more fully discussed below (see Section 4.3). First, it is important to keep in mind that residential mobility is strongly tied to social mobility. That is, improving the residential context almost always requires that an individual or household moves (Sampson and Sharkey, 2008). However, if incarceration is tied to residential instability among returning citizens, and if this instability occurs independent of other correlates of mobility, then the incarceration experience may significantly disrupt the traditionally upward progression of a housing career. Indeed, recent research documents that prison is associated with residence in less desirable neighborhoods following release from confinement (Massoglia et al., 2013). But this work by Massoglia and colleagues provides an incomplete picture of the post-prison residential context minus a direct examination of post-prison residential mobility. Finally, residential instability is itself a risk factor for the reentry and reintegration process (Steiner et al., 2011). To the extent that incarceration creates mobility, this study may have important implications for researchers and practitioners interested in recidivism. This would be especially the case if findings suggest that the effect of incarceration is driven by time-varying individual characteristics (such as employment or poverty status).

2. Materials and methods

2.1. Data sources

The present study draws on a combination of restricted-use and public-access data from the 1979 National Longitudinal Survey of Youth (NLSY79), a longitudinal social survey that has regularly interviewed an original cohort of 12,686 respondents since 1979. The original sample included nationally representative samples of white, African American, and Hispanic males and females. Also included were supplementary samples of African American and Hispanic males and females, as well as supplementary poor white males and females. After 1991, the supplementary poor white respondents were no longer interviewed. Between 1979 and 1994 the respondents were interviewed on a yearly basis, and since 1994 respondents have been interviewed in even numbered years. Especially during the period of yearly interviewers, attempts were made to keep the fielding period the same from year-to-year so that the time between interviews was approximately 12 months. The current study draws on the first 23 waves of individual level data, covering the period of 1979–2008. On average, each respondent provides about 16 valid observations, which are then transformed to mobility intervals (see below).

Key for the current study is that the NLSY79 contains a sub-sample of respondents who have spent at least 1 year in prison, and through their interviews the data provide valuable time-varying information on incarceration and life after release. To date, the NLSY79 data have been utilized extensively to examine incarceration (Massoglia et al., 2014; Western, 2002), and Western (2002) has argued that the data provide good coverage of American prison expansion. To the extent possible, incarcerated respondents are surveyed in the correctional facility in which they are housed. However, since incarceration status is derived at the time of the interview, this means that shorter spells of confinement (typically those under 12 months) are more likely to be missed. As a result, the measures of incarceration derived from the NLSY79 provide an incomplete picture of the total incarceration experiences of the individual respondents. I come back to this issue in the discussion.

Residential mobility is measured via access to restricted data that provides information on the state, county, and census tract of residence for each respondent at each survey wave.3 Because residential mobility occurs in context, I supplement the individual-level data with census tract characteristics provided by the Neighborhood Change Database (NCDB). The NCDB, a

3 This geocoded information is only available for onsite data analysis at the Bureau of Labor Statistics offices in Washington, DC. After a review for scientific merit, the BLS allows access to the data on a secure network. For more information consult the BLS at http://www.bls.gov/bls/blsresda.htm.
collaboration between the Urban Institute and GeoLytics, is a database of standardized census data from the 1980, 1990, and 2000 census collections. Census boundaries across time (at the individual and tract levels) are standardized to the 2000 census boundaries. This is an important feature because it means that observed mobility is an actual change of census tract, as opposed to mobility created by shifting census tract boundaries. Linear interpolation was used to estimate census tract characteristics in non-census years. In total, the NLSY79, used in combination with the NCDB, is well-suited to examine the impact of incarceration on mobility. To my knowledge this is the first study to examine if the incarceration experience has any independent effect on residential mobility net of individual and neighborhood features known to be correlated with the decision to stay or move.

2.2. Variables

2.2.1. Residential mobility

The focus of the current study is on physical changes of address that cross census tract boundaries. Whether these moves take households to better or worse neighborhoods is also an important question, but the question at hand concerns mobility differences between individuals with and without a history of incarceration. I measure residential mobility by comparing census tract locations at consecutive waves of data collection. Because the data are longitudinal, this entails transforming the (up to) 23 waves of individual data into a series of mobility intervals. A move occurs when a respondent lives in a different census tract at the end of a mobility interval (time \(t \)) than he or she did at the beginning of the interval (time \(t - 1 \)). Mobility intervals that include a move are coded 1, and those that do not are coded 0. Importantly, this strategy protects the temporal ordering in the mobility process by allowing individual characteristics to predict a change of residence at the following wave. On average, full residential locators are available for 85% of the interviewed NLSY79 respondents at any given wave.4

2.2.2. Incarceration

Incarcerated NLSY79 respondents are identified through a survey item that records the main residence for each respondent at each wave of data collection. Imprisoned survey respondents are interviewed at the correctional facility in which they are housed, meaning that spells of confinement are captured with certainty (Western, 2002). Among the 591 respondents with observations before and after prison, I use this residence item to create three measures of incarceration and life after release. The first is an indicator of incarceration history, which is coded 0 in all waves leading up to initial imprisonment and 1 in all waves following the transition out of prison. The second is a measure of sentence length, which is the total number of consecutive waves a respondent is interviewed in prison. It should be noted that this measure is a proxy for sentence length, as exact spells of confinement are measured with error (see the discussion in Section 4.2, below). The third incarceration measure is a count of the number of survey waves since a respondent was last interviewed in prison. This measure is coded 0 leading up to confinement (and in all waves for respondents without a history of incarceration), and then increases by 1 in each wave a respondent is interviewed following release from prison. I also test for non-linear relationships using a squared measure of time since release. Considered alongside the measure of incarceration history, the measure of time since release allows me to determine if the effect of incarceration grows or decays across the survey waves following release from prison.

2.2.3. Control variables

The empirical models that follow include controls for a number of important correlates of mobility and possible sources of spuriousness. Rates of mobility are highest in the 20s and early 30s, and then start to taper off in the mid- to late-30s (Clark, 1986). I capture the non-linear age trend with measures for linear age and squared age. I control for relationship status with a three item measure indicating if the respondent is never-married (the reference category), married, or divorced/separated/widowed. I control for presence of children in the household with a dummy variable coded 1 if there are children reported on the household roster, and 0 otherwise. Because homeownership fosters residential stability, I include a dummy variable coded 1 if a respondent reports owning or making payments on a home, and 0 otherwise. I further capture housing characteristics with a dummy variable that is coded 1 if the respondent reports living in public housing or receiving financial housing assistance, and 0 otherwise.

I also control for a number of socioeconomic and financial characteristics. I use a three category measure of education: less than high school, high school or some college, and college degree or higher (the reference category). I include two dummy employment indicators. The first, a measure of full-time employment, is coded 1 if the respondent reports working at least 35 hours per week. The second, a measure of unemployment, is coded 1 if the respondent reports being unemployed at the time of the interview. I control for family income with a dummy variable that is coded 1 if the respondent’s total household income falls below the federal poverty line, controlling for family size.

At the tract-level, I control for the racial composition of the census tract of origin. White households especially are known to leave neighborhoods with growing minority concentrations, and existing research has shown this effect to be non-linear.

4 One potential issue warrants additional consideration. Incarceration serves a disadvantaged population, raising concerns that respondents with incarceration histories may be more likely to drop out of the survey or be more difficult to locate. However, based on the total number of valid observations, there is little evidence that formerly incarcerated individuals are more likely than never-incarcerated respondents to be missing census tract information or have more missing observations due to non-interview.
(Crowder and South, 2008). I include controls for tract percent non-Hispanic black and the squared term of this measure. Finally, and as discussed more fully below in the analytic strategy, the model specification prohibits the inclusion of time-stable predictors. However, because of racial variation in mobility and locational attainment outcomes, I estimate race-specific models for white, African American, and Hispanic respondents. Each racial/ethnic category is a dummy variable taken at the first wave of data collection.

2.3. Analytic strategy

In the present study, I examine the relationship between incarceration and residential mobility in three ways: stigma via incarceration history, physical separation via sentence length, and life after prison through time since release. As noted above, the data are first transformed into mobility intervals, with multiple observations nested within individual respondents. When using longitudinal data in such a fashion, estimates from standard regression techniques can be biased because individual observations are likely correlated across time. With access to as many as 23 waves of data per respondent, I can utilize regression methods for panel data, which are useful in examining change over time in an outcome measure using predictors that also vary across time (Firebaugh et al., 2013; Johnson, 1995). In the present case, individuals can provide a total of 22 mobility intervals, and the average respondent provides about 15 mobility intervals.

Panel models alter the standard regression equation by adding an additional term capturing all between-person differences that are stable across time (i.e., time-stable individual effects) (Allison, 2005). I use the fixed effects specification of the panel model. In this approach, the time-stable individual effects are removed from the model, resulting in an analysis where each individual serves as his or her own control over time. Fixed effects models are preferable in this case because these models allow me to account for time-stable sources of spuriousness that are difficult to model, and that might predict both incarceration and the likelihood of mobility. Recall that the dependent variable is a dichotomous measure of mobility at any given mobility interval. The probability of making a residential move for any individual i at time t is $p_{it} = P(y_{it} = 1)$. This probability can be modeled as a logit link function, and is formally expressed (in a fully specified model) as follows:

$$
\log \left(\frac{p_{it}}{1-p_{it}} \right) = \alpha_i + \mu_i + \beta_1 \text{IncHx}_{it} + \beta_2 \text{SentLn}_{it} + \beta_3 \text{TimeSince} + \beta_4 X_i + \epsilon_{it}
$$

In Eq. (1), β_1 captures the average effect of incarceration across all survey waves following a spell of incarceration (i.e., incarceration history). The β_2 coefficient captures variation in sentence length (calculated by summing all consecutive waves where a respondent’s residence is marked as prison). The β_3 coefficient then models any change (growth or decay) in the average effect of incarceration across time. As such, the effect of time since release is best interpreted alongside the baseline effect of incarceration history captured by the β_1 coefficient. The X_i in Eq. (1) represents the control measures and their associated effects (the β_4s). Importantly, included in the controls is a time-varying measure of age, as well as the squared term to capture declining mobility during the transition to adulthood. Furthermore, the intercept in a panel model, α_i, is allowed to vary across time (t), but not across individuals (no subscript i). I capture additional variation across time (that is, potential period effects over-and-above age) with dummy variables for each mobility interval (with the first mobility interval omitted as a reference category). Finally, the key feature of a panel model is the term μ_i, which captures traits that differ across individuals but are constant for each individual over time (see Allison, 2005; Firebaugh et al., 2013). In the fixed effects specification, such traits are omitted from the empirical models.

3. Results

I start the presentation of results by providing descriptive information on residential mobility, incarceration, and other important variables in Table 1. I split these descriptive statistics down by history of incarceration (no history vs. any history). Because the data are in a mobility interval structure, the descriptive statistics presented in Table 1 reflect averages across all waves of data collection as opposed to a snapshot of descriptives at any given survey wave. Among those respondents with a history of incarceration, about half of their observations occur before prison, and about half occur after prison (as indicated by mean of 0.52 for incarceration history). These respondents spend, on average, 1.8 mobility intervals incarcerated, and are followed after prison for just over 4 mobility intervals. Individuals who experience incarceration are known to be disadvantaged in a number of ways that are important for outcomes like residential mobility (Wakefield and Uggen, 2010). The NLSY79 data reflect these trends. Compared to respondents with no history of incarceration, those who spend at least one wave in prison are less likely to be married, and more likely to be divorced or separated. They are also less likely to own homes or work full-time. On the other hand, they are more likely to lack a high school education, be unemployed, live in poor households, and receive housing assistance. They also tend to live in neighborhoods with a higher percentage of non-Hispanic black residents.

The results in Table 1 also show that individuals who experience incarceration at some point during the survey period are more residentially mobile than are individuals who never experience incarceration. Individuals with no history of incarceration move in just over one quarter of all observed mobility intervals. Conversely, individuals with a history of incarceration moved in about 40% of all observed mobility intervals. While not shown in the table, additional descriptive results suggest that mobility is higher after prison than before prison. Respondents with a history of incarceration moved in one-third of
pre-prison mobility intervals \((n = 3452)\). The rate of mobility increased to 46% in all post-prison mobility intervals \((n = 3840)\). This provides initial evidence that life after release from prison is characterized by residential instability.

What these results cannot tell us, however, is if incarceration emerges a distinct predictor of mobility after accounting for observed and unobserved sources of spuriousness. For this, and to also determine how sentence length and time since release from prison affect mobility, I turn to fixed effects logistic regression models in Tables 2 and 3. In Table 2 I show the results of five such models predicting residential mobility. To provide a baseline association, I first regress mobility on only the primary incarceration measure of incarceration history (which is coded 1 in all post-prison mobility intervals). In model 2 I add the two additional incarceration measures: sentence length and time since release from prison. These results provide insight on physical separation as well as any growth or decay in the general incarceration effect across time. To determine if incarceration affects mobility over-and-above the strong age trend in mobility, I first control for age and age-squared in model 3, and then add the rest of the individual and tract controls in model 4. Finally, in model 5, I take a very conservative approach by limiting the sample to only those observations among individuals with a history of incarceration (the “at risk” sample). All models control for period effects, which raise or lower the likelihood of mobility for all respondents, through the use of dummy variables for each mobility interval.

The results in model 1 of Table 2 support the descriptive evidence outlined above. Readers are urged to keep in mind that – when using a fixed effects specification – each survey respondent serves as his or her own control across the survey period. Thus, the coefficient of 0.87 for incarceration history means that the odds of mobility are more than doubled in those mobility intervals following release from prison \((e^{0.87} = 2.38)\). In other words, the likelihood of mobility is higher after prison than it is before prison. The inclusion of the other incarceration measures in model 2 does suggest that the general effect of incarceration erodes across time. Each additional mobility interval spent out of prison decreases the odds of mobility by about 4% \((e^{-0.036} = 0.96)\). It should be noted that, here and elsewhere, I tested if the effect of time since release was non-linear through the inclusion of a squared measure. This variable did not improve model fit and never reached conventional levels of statistical significance. Model 2 also provides some support for a physical separation explanation. Each additional wave incarcerated increases the odds of mobility by about 10% \((e^{0.100} = 1.11)\).

All time-stable sources of spuriousness are eliminated from fixed effects models, but the relationship between incarceration and residential mobility could be driven by time-varying sources of spuriousness. This possibility is examined in the remaining models of Table 2. I start by accounting for the strong-age trend in mobility, and results from the NLSY79 display a familiar non-linear relationship between age and mobility. Both the linear and squared terms are significant, indicating
that the likelihood of mobility starts to decrease as individuals move into adulthood. Accounting for the age trend, however, does little to the three incarceration measures.

The most notable changes occur when other time-varying individual and neighborhood characteristics are added to the model. The coefficients for many of the measures added in model 4 also reflect well-known trends in mobility. For example, respondents with children and respondents who own or are making payments on a home are less likely to move. The homeownership measure emerges as the strongest predictor of mobility, with the odds of mobility decreased by over 70% when respondents own homes ($e^{-1.288} = 0.28$). Respondents are more likely to move when poor (as indicated by the positive coefficient for family poverty status), but are less likely to move when they live in public housing. For those respondents who complete college (the reference category), they are predicted to be more mobile than before finishing high school and less mobile than when they had a high school degree. Finally, a non-linear trend emerges for racial composition. The likelihood of mobility increases as the proportion African American in the neighborhood increases, but then levels off and starts to decrease at high black concentrations.

Accounting for the host of time-varying measures in model 4 reduces the size of the incarceration history coefficient by almost 40%. That said, over-and-above these other measures, the likelihood of mobility is still increased by over 60% in those mobility intervals following prison ($e^{0.491} = 1.63$). This general effect, however, is not consistent across time. Rather, the elevated likelihood of mobility begins to erode as individuals spend more time out of prison. When considered alongside the measure of time since release, these results suggest that individuals would need to spend approximately 8 mobility intervals out of prison for the general incarceration effect to fall to pre-prison levels. The effect of sentence length is reduced by 25% from model 3 to model 4, and falls below conventional levels of statistical significance. This suggests that individuals who

Table 2

| Fixed effects logistic regression models predicting residential mobility. |
|---|---|---|---|---|
| | Full sample | At-risk sample |
| | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
| Incarceration history | .868*** | .800*** | .772*** | .491*** | .583*** |
| Sentence length | .100 | .097 | .097 | .099 | .111 |
| Time since release | .036 | .036 | .060 | .057 | .057 |
| Age | .265*** | .215*** | .205 | .097 | .097 |
| (Age)2 | .004*** | .003*** | .002 | .002 | .002 |
| Marrieda | .020 | .012 | .117 | .117 | .117 |
| Divorced/separated/widoweda | .025 | .025 | .111 | .111 | .111 |
| Homeownerhip | 1.288*** | 1.288*** | 1.11 | 1.11 | 1.11 |
| Residential children | .211*** | .211*** | .111 | .111 | .111 |
| No high schoola | .397*** | .397*** | .497 | .497 | .497 |
| High school or some collegea | .063 | .063 | .446 | .446 | .446 |
| Full-time employment | .046 | .046 | .002 | .002 | .002 |
| Unemployed | .009 | .009 | .011 | .011 | .011 |
| Family poverty status | .077*** | .077*** | .113 | .113 | .113 |
| Public housing residence | .287*** | .287*** | .040 | .040 | .040 |
| Tract % black | .006*** | .006*** | .008 | .008 | .008 |
| (Tract % black)2 | .107*** | .107*** | .003 | .003 | .003 |
| 2 log likelihood | 127470.20 | 127451.30 | 127006.47 | 121856.59 | 6820.45 |

Notes: Sample sizes: 10,304 persons and 152,965 mobility intervals Models 1–4; 591 persons and 7292 mobility intervals Model 5. All models include dummy variables for survey wave (wave 1 omitted).

* p < .05.
** p < .01.
*** p < .001.

a Compared to unmarried respondents and college educated respondents, respectively.
serve longer prison sentences are more likely to move, in part, because they are less likely to experience stabilizing life events like homeownership.

Thus far, the results suggest two things. First, the period following prison is characterized by residential instability. Second, the incarceration effect is strongest early in the reentry period, and begins to erode as individuals spend longer periods of time removed from their spell of confinement. These results remain consistent even in the final model of Table 2, where the results are limited to only those respondents with a history of incarceration. While limiting the sample in this way results in a loss of significance for many of the control variables, both incarceration history and time since release remain significant predictors of mobility. Here also, the coefficient for sentence length is again significant, increasing slightly between the models with a slight reduction in the standard error. As such, even in this very conservative approach, and among only those respondents at risk for incarceration, the likelihood of mobility is higher after prison than before prison.

To provide some additional context to the empirical results in Table 2, it is useful to more closely examine observed mobility following incarceration. Fig. 1 provides a breakdown of average residential mobility across the first five observations following incarceration, as well as average mobility for five observations among all never-incarcerated respondents.

Table 3
Fixed effects logistic regression predicting residential mobility; by race/ethnicity.

<table>
<thead>
<tr>
<th></th>
<th>Whites Model 1</th>
<th>Whites Model 2</th>
<th>Africans Model 3</th>
<th>Africans Model 4</th>
<th>Hispanics Model 5</th>
<th>Hispanics Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incarceration history</td>
<td>.683***</td>
<td>.255</td>
<td>.698***</td>
<td>.576***</td>
<td>.720***</td>
<td>.470</td>
</tr>
<tr>
<td></td>
<td>(.211)</td>
<td>(.212)</td>
<td>(.130)</td>
<td>(.132)</td>
<td>(.247)</td>
<td>(.252)</td>
</tr>
<tr>
<td>Sentence length</td>
<td>.202</td>
<td>.169</td>
<td>.068</td>
<td>.049</td>
<td>−.003</td>
<td>−.049</td>
</tr>
<tr>
<td></td>
<td>(.101)</td>
<td>(.100)</td>
<td>(.042)</td>
<td>(.043)</td>
<td>(.122)</td>
<td>(.125)</td>
</tr>
<tr>
<td>Time since release</td>
<td>−.077***</td>
<td>−.115***</td>
<td>−.017</td>
<td>−.030</td>
<td>−.038</td>
<td>−.063***</td>
</tr>
<tr>
<td></td>
<td>(.020)</td>
<td>(.020)</td>
<td>(.017)</td>
<td>(.017)</td>
<td>(.022)</td>
<td>(.023)</td>
</tr>
<tr>
<td>Age</td>
<td>.237***</td>
<td>.196***</td>
<td>.206</td>
<td>.206</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.035)</td>
<td>(.045)</td>
<td>(.055)</td>
<td>(.055)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Age)²</td>
<td>−.004**</td>
<td>−.003***</td>
<td>−.004</td>
<td>−.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>−.071†</td>
<td>−.023</td>
<td></td>
<td>.156</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.035)</td>
<td>(.048)</td>
<td></td>
<td>(.058)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced/separated/widowed†</td>
<td>−.034</td>
<td>−.040</td>
<td>−.286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.044)</td>
<td>(.056)</td>
<td>(.070)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeownership</td>
<td>−1.272***</td>
<td>−1.265***</td>
<td>−1.226***</td>
<td>−1.226***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.029)</td>
<td>(.045)</td>
<td>(.049)</td>
<td>(.049)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential children</td>
<td>−.260**</td>
<td>−.125</td>
<td>−.182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.030)</td>
<td>(.039)</td>
<td>(.049)</td>
<td>(.049)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No high school</td>
<td>−.457***</td>
<td>−.330†</td>
<td>−.477</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.064)</td>
<td>(.097)</td>
<td>(.123)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school or some college†</td>
<td>.063</td>
<td>−.010</td>
<td>.060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.042)</td>
<td>(.074)</td>
<td>(.100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time employment</td>
<td>.030</td>
<td>.031</td>
<td>.085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.024)</td>
<td>(.032)</td>
<td>(.039)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>−.005†</td>
<td>−.014</td>
<td>−.028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.035)</td>
<td>(.037)</td>
<td>(.052)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family poverty status</td>
<td>.140***</td>
<td>.014</td>
<td>.104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.032)</td>
<td>(.033)</td>
<td>(.044)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public housing residence</td>
<td>−.168**</td>
<td>−.229***</td>
<td>−.519</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.070)</td>
<td>(.046)</td>
<td>(.080)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tract % black</td>
<td>.017**</td>
<td>−.010†</td>
<td>.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tract % black)² * 100</td>
<td>−.013***</td>
<td>.007**</td>
<td>−.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−2 log likelihood</td>
<td>66681.27</td>
<td>63324.00</td>
<td>36081.68</td>
<td>34921.83</td>
<td>24092.04</td>
<td>23113.43</td>
</tr>
<tr>
<td>Mobility intervals</td>
<td>82,630</td>
<td>82,630</td>
<td>42,422</td>
<td>42,422</td>
<td>27,913</td>
<td>27,913</td>
</tr>
<tr>
<td>Persons</td>
<td>5900</td>
<td>5900</td>
<td>2670</td>
<td>2670</td>
<td>1734</td>
<td>1734</td>
</tr>
</tbody>
</table>

Notes: All models include dummy variables for survey wave (wave 1 omitted).

* p < .05.

** p < .01.

*** p < .001.

† Compared to unmarried respondents and college educated respondents, respectively.

On average, individuals with incarceration histories provide 4.7 post-prison observations. For respondents with fewer than five observations following incarceration, the breakdown is based on their available mobility intervals.

context, the figure also includes observed mobility following the first report of homeownership, which is also event-specific. I add homeownership as a contrasting life-event because, as shown in Table 2, it is one of the strongest correlates of mobility in the model.

Only one-third of the respondents with incarceration histories return to the same neighborhood after prison and remain there across time. About one-third move only a single time as they transition out of prison and back into society. Over 20% move twice, and around 13% move more than two times. Among those respondents with no history of incarceration, nearly half never move between ages 25 and 29, while another 31% move only once. Over 6% move more than two times. Thus, compared to those respondents who do not experience incarceration, formerly incarcerated respondents are less likely to remain residentially stable, and more likely to make repeated moves. This contrast becomes even more apparent when looking at those respondents who become homeowners. Nearly three-quarters of homeowners are observed in the same neighborhood across the five-wave observation period, and over 95% do not move or move only once.

3.1. Race-specific results

The results in Table 2 and Fig. 1 provide evidence of a link between incarceration and patterns of residential instability among all NLSY79 respondents. Earlier, however, I discussed racial variation in the relationship between incarceration and a variety of outcomes. Such variation motivates the following set of race-specific results. The use of fixed-effects models prohibits incarceration-race interaction terms because time-invariant characteristics like race/ethnicity are eliminated from the model. As such, the results displayed in Table 3 duplicate models 2 (incarceration measures) and 4 (all measures) from Table 2 for white, African American, and Hispanic respondents, respectively.

Models 1, 3, and 5 of Table 3 regress residential mobility on just the incarceration measures. These models suggest that incarceration, as captured by the measure of incarceration history, works to create mobility for everyone. The coefficients are fairly consistent, and there are no significant differences in effect size across racial groups. The effect of sentence length on mobility is strongest for whites, but this measure is only significant in the reduced model among white respondents. Furthermore, while all formerly incarcerated individuals see declines in the likelihood of mobility across time since release from prison, this effect is largely concentrated among formerly incarcerated whites (and the effect is significantly larger for whites compared to African Americans). Indeed, for blacks with a history of incarceration, the general incarceration effect does not significantly change across time.

A few notable shifts occur when individual- and tract-level controls are included in the race-specific models. Among whites and Hispanics, for example, the incarceration history measure is reduced to non-significance. The effect is reduced by more than half for whites, and about 35% for Hispanics. Thus, for these groups, while there is a trend toward increased mobility following prison, this effect is not statistically different from pre-prison trends. The effect of incarceration history remains significant for the African American sub-sample, but again the differences across the race-specific coefficients are not statistically significant. The coefficients for time since release increase slightly for all groups between the reduced and full models. Furthermore, in the full model, white ex-inmates see a quicker reduction in their elevated likelihood of mobility compared to African Americans.

A z test for equality of coefficients across independent samples was used to compare coefficients (Paternoster et al., 1998).

It is important here to reiterate that the composition of the NLSY79 sample shifts in a way that could impact the results for white respondents. The original supplementary sample of poor whites was dropped starting with the 1991 round of interviews. This subsample of white respondents was both more mobile than other white respondents, and more likely to experience incarceration (4.4% vs. 2.6%, respectively). This likely results in a downward bias in the incarceration effects for white respondents.
following prison than do black or Hispanic ex-inmates. After only about three mobility intervals, the likelihood of mobility among formerly incarcerated white individuals falls to pre-prison levels.

4. Discussion

4.1. Conclusions and summary of findings

Despite recent declines in the state prison population, nearly 1.5 million individuals are presently imprisoned in U.S. prisons, and hundreds of thousands of individuals will be released from prison every year for the foreseeable future (Carson and Golinelli, 2013). Many released offenders eventually come back to prison, but finding and maintaining stable housing can be the difference in successful or unsuccessful reentry (Bradley et al., 2001; Langan and Levin, 2002; Roman and Travis, 2006). However, ex-inmates encounter a number of formal and informal obstacles in the housing market, and the results of the present study suggest that the incarceration experience has a large and lasting impact on individual patterns of residential mobility. Three notable findings stand out.

First, the experience of incarceration is associated with an increased likelihood of mobility. Given the modeling strategy used (which treats each individual as his or her own control across time), this essentially means that the likelihood of mobility is greater after prison than it is before prison. Earlier I outlined possible explanations for any observed incarceration-effect, including the stigma of the criminal label and the physical separation created through incarceration. Longer prison sentences could create mobility as individuals become increasingly disconnected from former neighborhoods, but the results provide more support for a stigma-based explanation. While the measures of incarceration history and sentence length were both significant in a reduced model, the effect of sentence length was not robust to known correlates of mobility. The measure of incarceration history, on the other hand, remained significant in a fully specified model, as well as a conservative model limited to only those respondents at-risk for incarceration. This suggests that incarceration should be placed alongside other life-cycle and life-events as an important predictor of residential mobility.

Second, the effect of incarceration on mobility is not stable across time. Rather, for many returning citizens, the elevated likelihood of mobility begins to decay as they spend longer periods of time out of prison. This implies that the impact of incarceration on mobility is most pronounced early in the reentry process. Indeed, descriptive evidence from the data used here shows that more than 60% of individuals with incarceration histories lived in different neighborhoods after prison than they lived in before prison. This supports evidence provided by the Urban Institute’s previously discussed Returning Home Project (La Vigne and Kachnowski, 2003; Visher and Courtney, 2007; Watson et al., 2004). It is important to note, however, that many ex-inmates will not spend a long enough period of time out of prison for their post-prison likelihood of mobility to resemble their pre-prison likelihood of mobility. In a full model (see model 4 of Table 2), it takes approximately 8 mobility intervals for the effect of incarceration to completely diminish. But according to the most recent statistics, about two-thirds of released prisoners are arrested for a new crime within 3 years, and three-quarters are arrested within 5 years (Durose et al., 2014).

Third, the present study provides additional evidence of racial variation in the consequences of incarceration. For white and Hispanic individuals with a history of incarceration, the post-prison period is typified by an elevated likelihood of mobility, but not significantly higher than the period leading up to confinement. Furthermore, the raised post-prison mobility declines over time for these groups, and significantly faster for whites than for minorities. For formerly incarcerated African American individuals, conversely, mobility after prison is significantly more likely than mobility before prison. Unlike their white and Hispanic counterparts, black ex-inmates do not see a significant reduction in mobility as they move temporally away from prison release. Rather, returning black individuals are always more likely to be mobile after prison than they are before prison. Elsewhere, Goffman (2009) discussed how the criminal justice system transforms life in poor black communities. The attempts of crime involved men in these communities to stay out of prison come at the cost of stabilizing attachments to families and communities (Goffman, 2009). Such detachment and marginalization also appears to result in widespread residential instability.

4.2. Limitations and areas of future research

It is important to interpret the present findings in relation to limitations with the data and approach. My use of geocoded residential locators to measure mobility is consistent with existing research (South et al., 2008; South and Deane, 1993). However, such an approach results in a fairly conservative measure of actual mobility. All intra-tract residential moves, or those that begin and end in the same census tract, will be missed. This is unfortunate because many moves cover only a few miles, often beginning and ending in the same community (Lee and Hall, 2009). Furthermore, a respondent who moves twice between mobility intervals will be coded as only making one move, and a respondent could potentially be coded as not having moved at all if the second move is back to the original census tract. These issues become more relevant later in the data collection period when interviews take place every other year (after 1994). It may also be especially relevant for estimates of mobility in the period shortly after release from prison. For example, over half of a group of parolees in Ohio reported moving two or more times during the first year out of prison alone (Visher and Courtney, 2007). As a result, the first comparison following prison could actually reflect the second or third address since release from prison.
The NLSY79 also provides limited information on offending and criminal justice contact. Existing research suggests that the NLSY79 provides reasonably good coverage of U.S. incarceration rates (Western, 2002). But measuring incarceration through a residence item means that sentences are measured with error, as the exact start and end points of prison spells are not known. In addition, shorter sentences are more likely to be missed, especially those that start and end between interviews. As a result, observed incarceration is likely a conservative estimate of total incarceration. This error also means that the census tracts identified as pre- and post-prison might not be the neighborhoods that individuals live in immediately before or after prison. Finally, the NLSY79 does not survey the respondents on offending or criminal justice contact (such as arrest or conviction offense). This is unfortunate because some offenses (especially sex offenses) carry extra residential restrictions including areas where the returning citizen can and cannot live (Zgoba et al., 2009). Future research should attempt to tease out the effect of incarceration on mobility in relation to conviction and criminal history information.

4.3. Contributions and implications

These limitations in mind, the present results add to a growing body of research on the residential consequences of incarceration. In general, residential location and neighborhood features are both an outward sign of social standing and an important determinant of life chances (Sampson et al., 2002). Individuals and households generally make the biggest improvements to their residential context through residential mobility. However, while some mobility is good, too much mobility can itself be a sign of disadvantage. Highly mobile individuals generally share in common an economic marginality (Fischer, 2002). In the context of incarceration and reentry, Hipp et al. (2010) found that one or two post-prison moves may help to improve neighborhood conditions, but post-prison residential instability could steer parolees into less desirable neighborhoods. Furthermore, Massoglia et al. (2013) showed a pattern of residence in more disadvantaged neighborhoods after prison than before prison. But the authors did not specifically examine mobility as a pathway leading the formerly incarcerated into such neighborhoods. A logical extension of these studies, and one that should be empirically examined, could be that the incarceration experience places individuals on a trajectory of residential instability, which then steers them into poorer and more disorganized neighborhoods.

Such a pattern could subsequently impact the reentry and reintegration experiences of returning citizens. Kirk has shown how a change in neighborhood context following incarceration can protect against recidivism (Kirk, 2009, 2012). But too much mobility after prison can then become a recidivism risk-factor (Roman and Travis, 2006; Steiner et al., 2011). This is an important and relevant pattern because recent research has demonstrated that the restrictions associated with post-prison parole supervision can lead directly to mobility (Harding et al., 2013). In this sense, the prison experience may be contributing to an increased risk of recidivism if initially high rates of mobility do not decline across time. And incarceration could indirectly impact the reentry process by pushing returning citizens into disadvantaged neighborhoods, where recidivism rates are known to be higher (Hipp et al., 2010; Kubrin and Stewart, 2006).

These results also have important implications for theory and research on household mobility. This is the first study to directly examine incarceration as a predictor of residential mobility. By conceptualizing incarceration as a distinct life event, the results provide a more complete and nuanced picture of residential mobility than typically provided. Indeed, an important development in theoretical work on mobility has been the adoption of principles from the life course perspective (Clark and Withers, 2008; Geist and McManus, 2008). This extension has allowed researchers to more fully consider the myriad ways that life events impact mobility. It has been estimated that up to one-quarter of all moves are unexpected, and the current findings provide additional evidence that unanticipated or disruptive events can create disequilibrium in housing satisfaction that takes multiple moves to alleviate (Coulter and van Ham, 2013). That ex-inmates are more likely to move, net of known correlates of mobility, demonstrates the tenuous housing careers of economically marginalized individuals (Lee, 1978). The instability brought on by events such as incarceration or divorce likely disrupts the typical upward progression of a housing career. As such, future accounts of mobility should continue to expand the scope of inquiry to life events that might predict mobility in ways that fall outside of the traditional choice-based models.

Stable and secure housing plays an important role in the reentry process (Bradley et al., 2001), and policymakers should be interested in strategies that foster successful reentry through housing. It is difficult for recently released offenders to address employment, substance use, or health needs minus a stable living situation. Unfortunately, housing assistance varies tremendously across jurisdictions and states, with no single organization taking the lead on housing issues for returning citizens (Petersilia, 2003; Travis, 2005). Evidence-based housing interventions could help to promote successful reentry and lower the fiscal costs of incarceration.

Acknowledgments

This work was supported by a Grant from the National Science Foundation (SES-1202951). The research was conducted through the cooperation of the Bureau of Labor Statistics (BLS) with restricted access to BLS data. The views expressed here do not necessarily reflect the views of the BLS. The author is indebted to Glenn Firebaugh, Derek Kreager, Jeremy Staff, and Barrett Lee for providing feedback on an earlier draft. The author would also like to thank the Editorial staff and two anonymous reviewers for directing a very helpful revision. Finally, the author would also like to acknowledge Jennifer Cassidy-Gilbert for research support at the BLS.
Travis, Jeremy, 2005. But They All Come Back: Facing the Challenges of Prisoner Reentry. The Urban Institute, Washington, DC.